(2 marks)

Work Done & Power Past Paper Questions

Jan 2002 to Jan 2009

5 The graph represents the motion of a car of mass 1.4×10^3 kg, travelling in a straight line.

Q5 Jan 2002

(a)	10 second interval.
	(2 marks)
(b)	Calculate the maximum kinetic energy of the car.
	(2 marks)
(c)	At some time later, when the car is travelling at a steady speed of 30 m s ⁻¹ , the useful power developed by the engine is 20 kW. Calculate the driving force required to maintain this speed.

5		accelo 10 ³ kg	lerates at a steady rate of $2.5 \mathrm{ms^{-2}}$ along a straight, level road. The mass of the 12 g.	car is
	(a)	Calcu	culate the magnitude of the resultant force acting on the car. Q5 Jun	2002
				(2 marks)
	(b)		en the accelerating car reaches a speed of $2.2\mathrm{ms^{-1}}$, the total force opposing the r is $410\mathrm{N}$.	notion of the
		Calcu	culate	
		(i)	the driving force provided by the wheels,	
		(ii)	the power delivered to the wheels of the car.	
				(3 marks)
	(c)	Expla	lain how the total force opposing the motion of the car is affected when it is tra	avelling up a
		•••••		
				(1 mark)

(2 marks)

Q7 Jan 2003

verti	ericany at constant speed.				
You	You may be awarded marks for the quality of written communication in your answers.				
(a)	Describe an experiment to check whether the speed of the rising mass is constant.				
	(2 marks				
(b)	Explain how the output power of the motor is calculated, stating what measurements need to be made.				

In an experiment to measure the power output of a motor, the motor is used to lift a metal block

4	A skydiver of mass 70 kg, jumps from a stationary balloon and reaches a speed of 45 m s ⁻¹	after falling
	a distance of 150 m.	

(a)	Calcu	lculate the skydiver's Q4 Jun 2004	
	(i)) loss of gravitational potential energy,	
	(ii)	gain in kinetic energy.	
			(4 marks)
(b)		e difference between the loss of gravitational potential energy and the equal to the work done against air resistance. Use this fact to calculate	
	(i)) the work done against air resistance,	
	(ii)) the average force due to air resistance acting on the skydiver.	
			(3 marks)

		(3	marks)
	(ii)	the power output of the crane in this situation.	
	(i)	the work done on the packing case,	
	Calcu	culate	
(b)	The p	packing case is lifted through a vertical height of 8.0 m in 4.5 s.	
		(3	 marks)
			•••••
	You	may be awarded marks for the quality of written communication in your answer.	
(a)		reference to one of Newton's laws of motion, explain why the tension, T , in the cab qual to the weight of the packing case.	le must

A packing case is being lifted vertically at a constant speed by a cable attached to a crane. The packing

3 Figure 1 shows a ship being pulled along by cables attached to two tugs.

Q3 Jan 2007

(a) The tension in each cable is 6500 N and the ship is moving at a constant speed of $1.5 \,\mathrm{m\,s^{-1}}$. When θ is equal to 35°, calculate

	(i)	the resultant force exerted on the ship by the cables,	
	(ii)	the work done by the tension in the cables in one minute.	
			(4 marks)
(b)	Expl	lain why the work done on the ship does not result in a gain in its kinetic e	,
			(2 marks)

Continued....

(c)	State and explain the initial effect on the ship if the angle θ is reduced while the tension in the cables remains constant.
	You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer.
	(3 marks)

(8 marks)

stairs. The	performs an experiment to measure the power developed as he runs up a flight of athlete makes the assumption that the work done in climbing the stairs is equal to potential energy. Q5 Jun 2007
(i)	State the measurements that would be needed to find the power developed by the athlete.
(ii)	Show how the measurements would be used to calculate the power developed as the athlete runs up the stairs.
(iii)	Explain why the power calculated by the athlete is likely to be less than the power actually developed.

Q2 Jan 2009

2	(a)	(i)	State the difference between a scalar quantity and a vector quantity.
			(1 mark)
2	(a)	(ii)	State two examples of a scalar quantity and two examples of a vector quantity.
			scalar quantities
			vector quantities
			(3 marks)

2 (b) Figure 1 shows a ship fitted with a sail attached to a cable. The force of the wind on the sail assists the driving force of the ship's propellors.

Figure 1

The cable exerts a steady force of $2.8\,\mathrm{kN}$ on the ship at an angle of 35° above a horizontal line.

2 (b) (i) Calculate the horizontal and vertical components of this force.

horizontal component of force kN

vertical component of force kN

(2 marks)

2	(b)	(ii)	The ship is moving at a constant velocity of 8.3 ms component of the force of the cable on the ship acts ship is moving. Calculate the power provided by the wind to this sh	in the direction in which the
				Answer
				(3 marks)
2	(c)	exert	cable has a diameter of 0.014 m. Calculate the tensile ts a force of 2.8 kN on the ship, stating an appropriate ame the weight of the cable is negligible.	
				Answer(5 marks)